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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 386k

THEORETICAL: CATL.CULATTION OF THE POWER SPECTRA
OF THE ROLLING AND YAWING MOMENTS ON A
WING IN RANDOM TURBULENCE

By John M. Eggleston and Franklin W. Diederich
SUMMARY

The correlation functions and power spectrs of the rolliing and yawing
moments on an airplane wing due to the three components of continuous
random turbulence are calculated. The rolling moments due to the longi-
tudinel (horizontel) and normal (vertical) components depend on the span-
wise distributions of instantaneous gust intensity, which are tsken into
account by using the inherent properties of symmetry of isotropic turbu-
lence. The results consist of expressions for correlation functions or
spectra of the rolling moment in terms of the point correlation functions
of the two components of turbulence.

Specific numerical calculations are made for a pair of correlation
functions given by simple anslytic expressions which fit available experi-
mental data quite well. Calculations are made for four 1ift distributions.
Comperison is made with the results of previous anaslyses which assumed
random turbulence along the flight path and linesr varletions of gust
velocity across the span.

The rolling moment due to lateral (side) gusts, which is small, is
expressed in terms of the instentaneous value of the gust near the center
line of the fuselsge, so that the effect of spanwise variation in gust
intensity is 1lgnored. The yawing moments are considered to be propor-
tional to the rolling moments with the constents of proportionality given
by simple aerodynamic relstions.

INTRODUCTION

The gust veloclties acting on an airplane flying through turbulent
air are functions of position or time known only 1n & statistical sense.
Consequently, aerodynamic forces and moments produced by the lifting
surfaces of the airplsne can be known only in a statistical sense. If
the statistical characteristics of the turbulence are assumed to be
invarient with position along the flight path, flight through turbulent



2 NACA TN 386k

air may be-considered to be a statlonary rendom process and the mathe-
matical techniques developed for such processes (see ref. 1, for instance)
mey then be used in this problem. :

This approach has been adopted in many papers on this subject, among
them references 2 end 3. Inasmuch as in these papers the motions and
forces associated with the longitudinal degrees of freedom were of primary
interest, the assumption was made, dmplicitly, that the gust Intensity is
uniform along the span at any instant. However, for the problem of ans-
lyzing the motions end forces associated with the lateral degrees of free-
dom, this agsumption is inadequate, inasmuch as it implies that the verti-
cal and horizontal gusts produce zero rolling and yawing moments on the
wing. This problem has been treated in references 4 and 5 and elsewhere
on the basis of the assumption that at any instent the gust intensity
varies linearly across the span.

A fundemental method of accounting for the 1lift on a wing due to
random variations of the gust velocities in both the flight-path and the
spanwlse directions is given in reference 6 for the longitudinal response
of an airplane in atmospheric turbulence. The approach is based on the
assumption that the turbulence is axisymmetric (according to ref. T), so
that, at any arbitrary time or position in the turbulence, the statistical
characteristics of the turbulence encountered by an airplane do not depend
on the heading of the alrplane. On the basis of this assumption, the
variation of gust Intensity across the span can be related to the varia-
tion of the gust intensity along the flight path.

In the present paper the approach of reference 6 is extended to the
calculation of the rolling and yawing moments on a wing due directly to
vertical gusts, longitudinal gusts (hereinafter referred to as horizontal
gusts), and lateral or side gusts. These moments are required as a first
step in calculating the motions of a complete airplane in atmospheric
turbulence; the momente due to the motions caused by these Input moments
can be calculated by conventional methods and will not be considered
herein.

In the first part of the paper, a theoreticel analysis is made
defining the power spectra of the rolling and yawing moments of a wing
in terms of the statistical characteristics of the atmospheric gust veloc-
ities. By using.an analytical expression to define these characteristics,
8 numerical solution of the lateral moments is presented ln the last
part of the paper.
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SYMBOLS

a = B'Vl + (k')2

b
c
c

E(k), (k)

e}

wing span
wing chord
wing mean aerodynamic chord

complete elliptic integrals of the second esnd first kind,
respectively, of modulus k

longitudinal correlstion function for isotropic turbulence
Fourier trensform of £ |

lateral correlation functlon for isotropic turbulence
Fourier trensform of g

indiclial-response function of time only

indicial-response function of time and displacement

Fourier transform of two-dimensional correlation function

2 -1
2+ 7

modulus of elliptlc integrals,

reduced frequency, wL/U

modified Bessel functions of the second kind

incomplete modified Bessel functions of the second kini
section 1ift

integral scale of twurbulence

rolling moment

rolling velocity
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q dynamic pressure

r yewing velocity (used only in stability derivatives);
linear displecement between any two points

S wing area

t time

U mean forwerd velocity

Ut displacement along the flight path

v component of eirplene veloclty along positive Y-axils

ug,'vg, Vg three components of gust velocity (see fig. 1(a))

X, ¥, Z reference axes (see fig. 1(a))

X chordwise distance

y spanwise distance

&y = Yo - ¥

y¥* nondimensional spanwlise coordinate, E%E

a angle of attack, radlans

B' = b/L

¥ span influence funection

r integral weighting function

A= Ur/L

1 dummy veriable of integration, yz* - yi*

o] stmospheric-density

T dummy variable of time

w circuler frequency, 2ﬂ/Period
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Cy rolling-moment coefficient, R :b ent
; &
-

Yawing moment

Cn yewing-moment coefficlent, ™
a

r rb

3 —
2U

(]
B
™
il

o/
al<

Q/
Q
oJ

Q

-~

™

|

" l
cls

¥ correlation function

« & power spectral density
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Subscripts:
o) trim value
& gust component

A bar over a quantity denotes the mean value of the quantity. The
absolute value of a quantity is denoted by | |.

THEORETICAL ANATYSIS

Preliminery Considerations

In thils section expressions are derived for the power spectra of
the rolling and yawing moments of an unswept airplane wing or thin lifting
surface of arbitrary plan form due to flight through random atmospheric
turbulence. Essentially, the procedure consists of expressing the rolling
moment at any arbitrary position along the flight path in terms of the
gust velocity st that position, establishing the correlation function
between the rolling moments at any two points along the flight path, and
transforming this correlation function into an expression for the power
gpectral density. The power spectrum of the yawing moment is then related
to that of the rolling moment through simple aerodynamic relationships.

Assumptions.- The following assumptions are made in the analysis:

(1) The turbulence is homogeneous end isotropic; that is, the statis-
tical characteristics of the turbulence are invariant under a translation
or rotation of the space axes (although the results obtained for the verti-
cal component of turbulence require only the somewhat less restricting
assumption of exisymmetry).

(2) Time correlations are equivalent to space correlastions along
the flight path - an assumption usually referred to as Taylor's hypothesis.
(See ref. T.)

(3) The chordwise penetration factor (the indicial-response influence
function) for the rolling and yawing moments can be expressed as a product
of a function of distance along the flight path (or time) only and distance
slong the span only. '

(4) The wing considered herein is relastively rigid and, as a result
of the turbulent velocities, performs small motions asbout a mean steady
flight condition.

The implication of these assumptions and the limitatlons they impose
on the results of the analysis are discussed 1In a subsequent section of

the paper.
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Coordinate system and gust components.- The system of axes and the
local velocity fleld relative to the lifting surface are shown in fig-
ure 1(a). The velocity at each polnt in the field is resolved into com-~
ponents lying in the three planes of an orthogonsal set of axes, the X-axis
of which 1s tangent at every point to the flight path. Throughout this
paper these three components are designated as follows: The component
alined with the X-axis is referred to as the horizontal gust Ug; the

component alined with the Y-axis is referred to as the side gust vg;
and the component alined with the Z-axis is referred to as the vertical
gust Vg-

As the wing moves through the local wvelocity field, the random vari-
ations in the horizontal and verticael gust components are defined both
in the flight-path direction and in the spanwise direction at every posi-
tion along the flight path. Random variations of these gust components
across the chord are taken into account by indicial-response functions
and, hence, need not be considered separately.

The side gust component of the gust veloclity fleld is treated in
only & limited manner. Neither the chordwise nor the spanwise variations
of Vg are considered along the flight path; rather, Vg is assumed to

act on the wing as a point velocity with a variation only along the
flight-path direction. Contemporery aircraft exhibit such wide varia-
tions in distribution of dihedral across the span that it is doubtful
that a generelized analysis could be utilized. The polnt or centroid
analysis should be fairly accurate when the dihedral distribution is
predominant over only a small section of the span near the fuselage.
Such a distribution is exhibited by an unswept wing with zero geometric
dihedral mounted very high or low on a fuselage. For a wing with zero
aerodynamic dihedral, this component could be neglected completely.

Definition of gust correlsetion functions.- In order to define reandom
variations of the gust velocities both along the flight path and across
the span of the wing as it moves through the turbulence, it 1s necessary
to define the correlation between any two velocitles 1n the gust field
through which the wing passes. The space correlation function of a veloc-
ity u is defined in terms of the distance r as

X
Tu(r) = x}f2¥ g; L/ix u(rl) u(r1+r) dry (1)

Von Karman and Howarth (ref. 8) have shown that, in homogeneous isotropic
turbulence, the correlstion between two velocity vectors a distance r
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apart can be defined in terms of two scaler functions f(r) and g(r)
and that this relationship is invariant with respect to rotation and
reflectlon of the coordinate axes. These one-dimensionel correlation
functions relate the paired wvelocity components obtained by resolving

the velocity vector at any two points & distance r apart into two parts:
The pair lying along the straight-line path between the points are known
as the longltudinal components and the pair hormal to the straight-line
path are known as the lateral components. These two pairs of components
are plctorially shown in figure 1(b). Such velocilty components may be
measured in wind tunnels downstream of a grid mesh. (See ref. 9.)

In reference 8, it is further shown that these correlstion functions
are interrelated by the differential equation

280 L o2y - g(x) 2

By defining the variable r in the coordinaste system of this paper and
using the correlation tensor of reference 8, a two-dimensional analysis
of the turbulence as it affects the wing may be made in terms of f£(r)
and g(r). The variable in the correlation functions of the horizontal
and vertical gust components in the two-dimensional XY-plane of the wing
is gilven simply by

r = \[(Ax)2 + (Ly)2 = WUT)Q + (av)2 -_ )

The correlation function of the horizontal gust components, as
derived from the correletion tensor of reference 8, is defined in terms

of x- and y-components of the present analysis by the formula

_— 2
gug(AXJAY) = u-ge <AX) f[ Ax)a + (AV)ZJ +

()2 + (o)
2
= — g[\[(m>2 + (zw)e] ()
(&x)™ + (&)

The relatlonship between the components is shown schemstically in fig-
ure 2(a). -
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In a like manner, the correlation function of the vertical gust
components affecting the wing, given in terms of the mean-square value

of the vertical gust velocity wgz, may be seen to be simply

Ty (8, 09) = wig? &|\(2)2 + ()2 (5)

For the case of side gusts acting on a wing, the correlation func-
tion would be defined in terms of Ax and Ay If the spanwise correla-
tion were considered. (See fig. 2(b).) Inasmuch es the side gust is
considered to act only at a point on the span, Ay 1is zero, and the
correlation function for the side gust in terms of its mean-square velue
becomes

Ty (a0 = vg? (a) (6)

Although the mean-square value of each of the three gust components
is given separate identity, under the assumption of isotropy '

ug? = vg2 = wg? - (N

With the gust-velocity correlstion functions thus defined, the
forces and moments due to antisymmetric components of the gust-velocity
field acting on a wing passing through that field may be derived in terms
of these correlation functions.

Rolling Moment Due to Gusts

Vertical gusts.- The Iinstantaneous wing rolling moment due to wertical
gusts can be written in terms of en indicial-response influence fumc-

tion h'(t,y) as

My(t) = f_:f_:z h'(tl,y) wg(t-tl,y) dy dtq (8)

According to assumption (3) of the section entitled "Preliminary Con-
siderations" (see also the argument presented in ref. 6), the func-
tion h'(t,y) can be expressed in the form
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h'(‘bl,y) = h(’cl) 7(¥) (9)

where 7(y) 1is a steady-state span influence function and h tl) con-

tains the unsteady-1ift effects. The rolling moment can then also be
written as

My(t) = f: h(ty) dty fzz Ay) vg (t-tl,y) dy (10)

If the correlstion function for the rolling moment is calculated .
from equetion (10) and a power spectrum for the rolling moment is obtained
by taking the Fourler transform of the correlation function, the resulting
expression may be shown to consist of a product of two functions: One
function is the result obtained from quasi-steady considerations alone,
and the other is the absolute squared wvalue of the unsteady-lift function
for sinusoidal gust penetration such as that given by Sears in refer-
ence 10. Consequently, consideration will be confined to an analysis
using quasi-steady expressione for the rolling moment; that is, the lag
in bulldup of 1lift across the chord of the wing due to the gusts is not
ineluded.

In quasi-steady flow, the rolling moment of & wing due to a variable
angle-of-attack distribution across the span 1s given by

My gShCy

[:;2 E(y)] aely) y &y (11)

where section 1ift
U(y) = c3(y) a e(y)

and local angle of attack due to gusts

og = vg/U
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Now, one theorem of linearized airfoil theory states that the 1ift (or
rolling moment) on a wing due to an srbitrary spanwise angle-of-attack
distribution is equal to the integral over the entire wing of the product
of the spanwise lift distribution due to a unit constant (or linearly _
varying) sngle of attack and the given arbitrary angle-of-attack distri-
bution. Hence, the rolling moment is also given by

qSbCy = f- :i [I(y)]d;y ag(y) dy (12)

This theorem is valid not only in steady but also in indicial flow.
(See reciprocity theorems of ref. 11.)

When the indicated substitutions are made, the rolling-moment coef-
ficient along the flight path is

qo=y

-Gy b/2 |ey(y) ely) (%, ¥)
c =2 g
1(x) > -/:b/a s e
_c-LP 1
= —TI-U_ "/:l 7(y¥) Wg(X;IY*) dy* (13)

where y¥ = —_ and the steady-state 1ift distribution

a=y*
re(y*)
¥ (y¥) = ©2(7) c_y* (1k)
-CZP c

pertains to a linear antisymmetric angle of attack across the span. It
may be seen that, by virtue of its definition, ¥(y*) must satisfy the
relation ’

1
L 7(y*¥) y* dy* = 2 (15)
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Horizontal gusts.- In analogy to the analysis of the preceding sec-
tion, consideration will be confined to the quasi-steady case. When
stabllity axes are. used, a change in forward velocity at any spanwise
station increases the magnitude but does not change the direction of the
lift and drag vectors. Thus, the horizontal-gust contribution to the
dynamic pressure is

2a(y) = 2o J[ugly) + U]E - 02

Il
(vl [

= e u +2UL1
2Ps g

Uy (¥)

=2qo U

under the assumption that ug'<< U. When this linearized approximation

is used, the 1ift on each section is proportional to the local engle of
attack:

The rolling-moment coefficient due to horizontal-gust velocities 1s
thereby defined as

-Czp %o 1
1) = —2— [ 7 ) uglm) art (26)
where now
2agl=y*
[cl(Y*) e(y*)
7(y*) = — (17)
l —Clp ¢

The only difference in evaluating »{y*) for horizontal and vertical
gusts lies in the definition of the parameter having a varlastion of y*
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across the span; for the vertical gust, that parameter is taken as the
additional angle of attack and, for the horizontal gust, that parameter

is 204 IEI The condition that

1
fo 7(y¥) y*¥ ay¥ =2

remains unchanged.

Antisymmetric Span Influence Function {y¥)

The antisymmetric span influence function 7(y¥) is defined over
the span so thet any given distribution of 7(y¥) will produce a unit
rolling moment. These distributions refer to the span loading due to
a linear angle of asbttack o = y¥ for the vertical gust or a linear

leading-edge velocity 2ag %g: y* for the horizontael gust. Four basic

variations of {y*) have been considered with the proper constants so
that equation (15) is satisfied. The equations for the y(y*) varia-
tions considered are given in table I and plots of these variations are
shown in figure 3(a). The names given to the four distributions obtained
by rolling the wing refer to the distributions which would be produced
by a uwniform angle of attack.

Correlstion Function of the Rolling Moment

Vertical gusts.- The autocorrelation fumction of the rolling moments
due to vertical gusts at any two stations along the path of the wing is

defined as

1 X -
o) < M g [ o) afn) s GO

X—>»
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With the substitution of the expressions for Cz(xe) and Cz(xl) as
given by equation (13), the correlation function of equation (18) becomes

¥g, (xo-x Lim lf f 7(¥1*) vg(x y*.)dy_*flaf(y-*)W(xe,y*)dy*d.x
cren) = Mo o ) e 2*) va(avi¥) ¥ [ | 7(ve*) ve(xervet) wat &g

X—>

¢, 2 X
) 1_6% j: jj r(32*)r(vet) Tm = f_x wg (kL v1¥) Vg(xarva¥) @y dyy* ayg*

.2 1
B 56-% [1 j:l 7@1*) 7(”'2*) E"s("2"‘1’”'2*"”1’_°) dyy* dyg* (19)

where it 1s assumed that the functions are convergent under either order
of integration. An expression 1s thus obtained for the correlation func-
tion of rolling moment in terms of the correlation function of vertical-
gust velocity. In equation (19),

X
1
i{rwg(x2-X1:Y2*-Yl*) = lim X f X Wg(xl,Yl*) Vg (XQ’YQ*) dxy

X——>cc

is the same as the two-dimensionsl correlation function defined earlier

as equation (5) with Xo - X7 = M&x and yo¥* - yl* = My* = E%E.

By the proper substitution of variables, the double integrals of
equation (19) may be separated into the single integral of the product
of the integrated weighting functions of 9(y*) and the correlation
funetion ng. Thus, with the substitution of

x2-xl= Ur

* _ * =
Yo* - y* =
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equation (19) becomes

c, 2 po2
¥g, (U7) = 553— h/; r(n) EWE(UT,H) dn (20)
where
1-1
r(n) = L 7(y1*) 7(yl*+n) dy,* (21)
and
- \/ 2 bﬁ 2
B, (0, = 72 g|\(n)? + () (22)

Equation (22) may be recognized as being equivalent to equation (5).

Horizontal gusts.- In an identical manner, the autocorrelstion fune-
tion of rolling coefficient due to horizontal gusts at any two stations
along the path of the wing is derived by use of equations (16) and (18):

X
Yo, (¥oxy) = 1w EJ;{— j: Cy(x2) Cy(x1)

X—ox X

T
= [ [ 700¥) oe) Bsgleemvaran) any avet

With the same change of variables as in the preceding section,

2

2g 2
o, (00) = =22~ [ () gyglorm) an (23)
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where

- 2 2
iféug(U'r,n) = ug? (Ur) . f[\,(U'r)2 + <b?n):| +

Cll
2 5 8 \j(UT)2 + (%) (24)
' b
(U#)a + (—2)
2
and equation (24) is now the equivalent of equation (4). The integral

welghting function [I(n) is the same for both the horizontel- and the
vertical-gust contributions to thelr rolling-moment correlation fumctions.

Integral Weighting Function T'(7)

The integral weighting function I (1) as defined by equation (21)
has been evalusted for the four distributions of y(y*) given in table I.
These velues sre listed in table II and plotted against n in figure 3(b).
It may be shown that the nature of the fumction is such that the
relationship

2
/; r(q) dy =0 (25)

must be satisfied for any variation of .I' which pertains to an anti-
symmetric varlation of y(y*¥). In table IT the elliptic distribution
ig given in terms of K(k) and E(k), which are complete elliptic inte-
2 -1
2+ 1
The derivation of the elliptic weighting function is included in the
appendix of the paper.

grals of the filrst and second kind, respectively, of modulus k =

Power Spectra of the Rolling Moment

The power spectrum of the rolling-moment coefficient C; 1s defined
as the Fouriler transform of the autocorrelation function of Cy:
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© -18
o¢, (w) = ﬂ—% f_m ¥, (Ur) e o a(ur) (26)

For the vertical gusts, the power spectrum of the rolling-moment
coefficient may be found by substiltuting the derived relationship for
ﬁcz(UT) given by equation (20) into equation (26):

2
Cz o - 2
QCI(CD) = 8“—[13- im e j%h- J; r(n) 'I’wg(UT:TI) dn a(ur)

2

Clp 2 o iS5
= Q f; r(n) /:w e v ing(vr,n) a(Ur) dn

2
CIP 2 fa\}
= — f r(n) Iw<ﬁ,n) an (27)
&P YO

Changing the order of integration here is permissible Iinasmuch as the
integrals of the correlastion function of Wg are convergent in both Ur
and 1. The integral I,; 1s defined as

ST
) = ST son et (28)

-0

Similarly, the power spectrum of rolling-moment coefficient due to
the horizontal component of gust is obtained from the substitubion of
equation (23) for the term fcl(U%)_ appearing in equation (26):

2g, 2

SN 2
°Cz(“°) = —;U;—P f; r(n) Iu(%,n) an (29)
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where the integral I, in equation (29) 1s defined as

Iu(%,"]) = f : Rl Ty (Ursm) a(Ur) (30)

Thus, for two of the three components of turbulent gust velocities,
the power spectrum of the rolling-moment coefficient is dependent on the
Integration of a function of the 1lifting distribution of the wing times
a function which represents the Fourier transform of the correlatlon
function of the verticel and horizontel gust components over the wing
span.

As previously stated, these results are based on quasi-steady con-
slderations. Unsteady-lift effects can be taken into account simply by
multiplying the power spectral density of the rolllng moment due to each

o _
gust component by the function @(ﬁ%) s, where ¢ 1s the Sears function
given in reference 10. .

Approximation for Side Gusts

As pointed out previously, the slde gust is treated here only in an
approximate manner; that is, the spanwise effect is neglected. Based on
this approximation, the rolling-moment coefficlent is defined as

Vg(AX)
Cylx) = Cy —r—eem 1
1(x) lp o= (31)
The correlastion function 1s defined by
o) = 2 o (52)
T) = ———

and the power spectrum is defined by

Czﬂe;s_z
QCI(CD) = ———U_2—— G’((D) (33)
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where

o 147
&) = ;lﬁ f e U g(ur) a(ur) (3k)

Relstions Between the Yawing and the Rolling Moments

No attempt is msde herein to calculate directly the yewing moment
due to atmospheric turbulence. Because of the more complicated nature
of the phenomena which give rise to drag, as compared with those which
give rise to 1lift, such an underteking would be quite difficult. Further-
more, 1n view of the fact that the yawing moments on the wing due to tur-
bulence are relatively small, a detailed analysis would not generally
be warranted. In this section, therefore, an approximste procedure is
outlined for obtaining the yawing moments from the rolling moments.

' The yawing-moment coefficient due to sideslip can be expressed in
the form

Cn = Cnﬁ(a) B

where, in this case, o« 1is the sum of the trim angle «, and the

W
- instantaneous mean verticel-gust angle 7%5 and where B 1is the instan-

7
taneous mean side-gust angle ??5 so that

where the second term is of higher order and is neglected. Similarly,
differences in vg along the span give rise to higher order terms.

The rolling moment can be expressed in the same form, so that the
relstionship between the yawing and rolling moments due to side gusts
is given by

Ca(vg) = Cﬁ 01(vg) . (35)
1 .
- B C(o
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Actually, this contribution to the yawing moment is generally negligible
and 1s Included here primarily for the sake of completeness.

For the yawing moments due to vertical and horizontal gusts, similar
reasoning may be employed. The yawing moment in these cases arises from
the antisymmetric part of the instantbaneous angle-of-sttack distribution
due to turbulences-as does the rolling moment, so that the two moments
mey be expected to be approximately proportionel to each other; that is,

Cn(wg) = Cy (wg) (36)

|
Olp
Lo}

Cnp

Cn(ug) C2 (ug) (37)

Czr %

In essence, these relations imply that the yawing moment due to a given
instantaneous spanwise gust distribution is the same as the yawing moment
due to a linear gust distribution which has the same rolling moment. The
deviation of the actual distribution from a linear one results in small
differences in the vortex field and, thus, in small differences in the
induced downwash. These differences lead to a contribution to the yawing
moment which is believed to be small and, hence, has been ignored.

In terms of their power spectra, the yawing moments are’defined as

Cn.\ 2 |
¢cn(aﬂ = E_L> ¢C1(“ﬂ
Ug br/ee Ug
Cn 2
%a(a)| = (ﬁ) %yle)| p (38)
Vg Vg Vg
() C“P) T (@)
L) = | —=
Y g Ctp/a, CI&W&J

The power spectra of the rolling moments are defined in the preceding
sectlions.
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APPLICATION

Approximations to the One-Dimensional (Point)
Correlation Functions

In order to evaluste the effects considered in the preceding part
of the peper, calculations will now be made by using the results derived
therein. These calculations will be based on a simple analytical expres-
sion for the longitudinal point correlation fumction which has been sug-
gested in reference 12 on the basis of measurements in wind tunnels:

I=]

#(r) =e L (39)

where L is the longitudinal scale of turbulence defined for any longi-
tudinal correlation function #£(r) by

L = ng £(r) dr (ko)

The characteristics of clear-air turbulence measured in the atmosphere
(ref. 13) may be shown to be reasonably well represented by equation (39),
with a value of L of approximately 1,000 to 2,000 feet. There are some
theoretical objectlons to this function - primerily the fact thaet it has
a nonvanishing slope as r—>0 eand, hence, that the associated power
spectrum does not decrease raplidly enough for very short wavelengths.

These conditions imply that the mean square of the derivative of the gust
velocity with respect to the space coordinate 1s infinite. However, from
gvailsble measurements on atmospheric turbulence, it appears that equa-
tion (39) remeins valid to distances which are small compared with the
spen of the airplane (on the order of several inches), and the behavior

of the spectrum at very short wavelengths is relstively unimportant because
airplanes cannot respond to them to any apprecisble extent. Therefore, in
the asbsence of more relisble information all calculations described in

this paper are based on equation (39).

The corresponding latersl correlation function related to £(r) by
equation (2) is found to be

Ed]
glr) = (l - é%l)e L (41)
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A plot of the functions given by equations (39) and (41) is shown
in figure 4. Their respective power spectra, denoted by &(k') and

F(k') where k' = %%5 are given by

F(k') = L __r (k2)

U4 4 (k)2

sy o L L+ 3%
U I:l . (k')é]E

These power spectra are plotted to a logarithmic scale in figure 5, where
it may be-noted that the asymptotic slope as k'—>x has a velue of -2.0.

(43)

Calculations for Vertical Gusts

Rolling-moment correlstion function.- When equation (41) is substi-

2
tuted into equation (22) with r = \/(U'r)2 + (923-) s the correlstion func-

tion defined by equation (22) becomes

1) ey 200 Y
_— 3| - Hff(ur) {2
¥y (UT,m) = wg? (L - .ELL\I(UT)z * (b_z*l) e " +<2) (4h)

Inesmuch ss the evaluation of the rolling-moment correlation function,
as such, is not necessary to the anaslysis of this paper, only limited
considersation is given to the calculation of autocorrelstion functions.
Equation (20) has been evaluated in closed form for the case of the
rectangular distribution of the span influence function 7(y*) as given
in tables I and II:



n,

NACA TN 3864 23

(m +1202 - 3322 & 2h + ah) ey p'%[fl(a',z) - 7&0(5',7\)] (&5)

where Eb and El are defined in reference 6 as incomplete modified
Bessel functions where

N sinn-12-
Ky(B'5A) = u[‘ A e-N cosh 6 oogh vo de (46)
0
and
ﬁ':-b- 7\=_UI
L L

These two parameters represent the ratios of the distances b and Ur
to the integral scale of turbulence L. The parameter B' reflects the
size of the wing span relative to the characteristic size of the turbu-
lence and, as such, 1s one of the more importent parameters appearing in
all the calculations involving spanwise correlation. It effectively
scales the magnitude and shape of the correlation functions and power
spectra and, in the limit as B'—>0, the equations for the antisymmetric
moments likewise go to zero inasmuch as no rolling or yawing moment will
exist when a finite span shrinks {to a point.

The parameter A is a measure of the flight-path distance relative
to the characteristic size of the turbulence and, in the limit as A—>0,
the correlation function must reduce to the mean square value of the
rolling-moment coefficient; hence,

6_7.-5= 501(7\ = 0)

2 2
wg Gy '
- = ;’ <5B'5+125'2+24ﬁ' +21L)e‘B rp'0 - 2 (%7)
Bru '
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Inasmuch as_no adequate tables appear to be aveilable for the func-
tions Kb and Kl, a numerical evalustion of equation (45) has not been

made. However, an analysis of this correlation function with other
approximetions for f(r) indicates that the effect of gpan loading 1is
minor and that a reduction in B' attenuates the correlation function.

Evaluation of IW(%%n).- For the vertical gust component, the inte-

gral definition of Iw(%;ﬂ) is given by equation (28) whereas Iw (Uv,7)
g

is now defined by equation (4%). The indicated integration may be per-
formed in closed form as a function of 7 and the reduced frequency
parameter k'. Thus,

u
mrp
™
l'ml
m!-
=
+
——
W
o
1_"’J
=
= Nl:

3 5}:,? ] w

+ (k')

where

k' = &
U

and Kb and. Kl are modified Bessel functions of the second kind of
order O and 1, respectively.

A plot of equation (48) is shown in figure 6 as a function of the
frequency parsmeter k', for a range of values of B'n/2 from O to 1.0.
Although the physical significance of the function I, is rather obscure,
the plots are useful 1n the subsequent numerical integration of the prod-
uct of Iy and T. T

Power gpectrum of rolling moment.- In general, the amalytical solu-
tion of equation (27) for the power spectrum of the rolling-moment coef-
ficlent due to vertical gusts, when possible, is a tedious process.
Numerical integration by means of either Simpeon's rule or some inte-
gration process of higher order is generally preferable to integration
in closed form. However, the analytical evaluation of equation (27) for
the case of a wing with rectangular span loading ls given here in order
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to 1llustrate some of the characteristiecs of the equations. After the
indicated substitutions are made, equation (27) becomes

[\ ]
W Gugie, 2 2 (B—ﬂ) Bl 4 50e)?)
oo, (k') _ = "B bo- 6 3)|__\2 / 2 -
1 3 N+ 5 Ko + 575 Ka| @
8- 0 1L+ (k') l}- + (kx)E:l
. -

for which the integrasted solution is

- 2
18w82Lc7,P -

:tUja.l‘E. + (k')z]2

9g, (k') = a?(g')EL/;a Ko(x) ax + {%ﬁ + 16a?|} - (k')%j} Ko(a) +

{235[3 - 2] + 5281 - (k')e]} k(e + 2621 - 3612] - 321 - )2 (49)

vhere a = B'Vl + (x")2, x'= %%5 end Ko(a) and Kj(a) are modified

Bessel functions of the second kind of argument a.l Equation (49) is
plotted in figure T(a) as a function of k' for a range of B' between
0.03125 and 1.0.

For small values of frequency o (and hence k') or scale factor B,
equation (49) becomes poorly behaved because the solution tekes the form
of small differences of high-order terms. The reason for this may be seen
by expanding the Bessel functions in thelr power-series form and grouping
like powers of the variable a. The coefficients of the first three terms

of the power seriles a'h, a'2, and &9 (which ar¥e the predominant terms
for values of a < 1) are identically zero. Under these conditions, small
computing errors or the lack of significent figures will cause large insac-
curacies in the numerical evalustion of the function.

The difficulties just described may be overcome somewhat by eveluating
equation (49) for the limiting case of k' = O:

18w,21C, 2 |
g 10
o (k'=0) = ——— 2 (;3‘1‘ + 16;3‘2)1(0(3‘) + (65‘3 + 525')1{1(5') + 282 _ 3
1 )i
%P’ (
50)

yalues for the integral of Ky may be found in several publica-
tions, one of which is reference 14, table 2 (Zahlentafel 2). A com-
prehensive listing of other available mathematical tables including these
Bessel functlions is given in reference 15.
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When the Bessel functlons are again expended in powers of p', only several
terms are needed to evaluate the function at small velues of B'. As before,
the coefficients of all negative orders and the zero order of B' are
identically =zero.

The physicel necessity that, as the span b approaches zero, the
expression for the power spectrum of the rolling-moment coefficient must
also approach zero is satisfied by equation (49) inasmuch as the lowest
order term with a nonzero coefficient eppearing in the eguation is a2
(as pointed out above); that is, for b—>0,

chz(w) ~ (Constant) 82 = 0

In order to compute OCI for the other three types of distribution

of wing loading given in tables I and II, a numerical-integration process
involving Simpson's three-point rule of integration was employed. The
power spectra thus obtained are plotted in figures T(b), (c), and (d).
This method was also used for the rectangular 1lift dlstribution and was
found to give good agreement with the anslytical results.

It is of interest to note that whereas the power spectra of the
vertical gust approach a logarithmic decrement of -2 (see fig. 5), the
rolliing-moment power spectra shown in figure 7 approach a decrement of -3.
At the low-frequency end of the spectrum (long wavelengths) the power
appears to epproach a constant which is zero only when ', the ratio of
span to scale of turbulence, is zero.

Some simpllified approaeches to the calculation of the rolling power
of gusts (for example, ref. 4) lead to the result that the spectrum of
the rolling power of the vertical gust asppears as the first derivative
(slope) of the vertical-gust spectrum. As mey be seen from figure T,
such an approximation is justilfied only in a very smsell band of frequencies
for wings having small values of g’ i

Calculations for Horlzontal Gustis

Rolling-moment correlation function.- When the expressions for f(r)
and g(r) glven by equations (5977and (hl) are substituted into equa—

tion (24) with r = VQUT)E (%?)2, the oré-dimensional correlation func-

tion for horizontal gusts becomes
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2 ‘f
1. _E;LL_ (%l) L'% (UT)2+(%L)2 (51)
V(TT’I')a + (%)EJ

The correlation function of rolling moment is obtained by inserting equa-
tion (51) into equation (23) and integrating. For a rectangular distri-
bution of y{(y¥),

?Zug(UT:ﬂ) = E

Ble

—_ ’ 2 ’
o, (0r) = M “/;2‘(4 e n3) L. %) e—% (Ur)2.,.(9£)2 d

222 4 6};\}3'2-1-)\2_ 1}(12 + B\ + 3)3—K} ) (52)

and

—_— lFBUgZGOZCZP 3 2 t
c22=_____(5' +3 e +6)eP 6 (53)
U2 ll{‘
B
As in the case of the vertical gust, the correlation function has not
been calculated for the other three distributions of 9(y¥) for the
reasons alreedy given.

Evaluation of Iu<%, n) .- The evaluation of Iy, as defined by equa-

tion (30) for the case of the horizontal gust, is given by the expression
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- -
2 2 (pn\2
T by -l\‘(U'r) +(3)
Iu(%;;'ﬂ) = ug? e U [1- ?;_—l- <2> z e U 2 a(ur)
) V(UT)2 + (EH)
2
— | B g e [ —
= ug ____2___Kl B——T}-\‘l + (k:)2 _ (B2Tl Kg B 1+ (k:)2
1+ (k|)2 2 P
(54)
where k' = %%5 and Ko and K; are the modified Bessel functions of

t
the second kind of argument B 1+ (k')2.
2 ..

The function given by equation (54%) is plotted against k' in fig-
ure 8 for values of p'n/2. Values taken from this plot mey be used in
the numerical integration of the power spectra of the rolling-moment
coefficient.

Power spectrum of rolling moment.- The power spectrum of the rolling
moment due to the horizontel components of turbulence acting on the wing
has been determined by using the expression for 1I,; obtained in the
preceding section end the four distributions of the paremeter I(n) given
in table II. The integral of equation (29) has been evaluated numerically
for all four cases of load distribution, and the resulting veristions of
the power spectrum with frequency and B' are plotted in figure 9. In
addition, the analytical solutions for the cases of rectangular and par-
ebolic distributions are given here and their numerical values were
checked against those obtalned by the numerical-integration process. By
use of equation (54), the solution for the rectangular case is found to
be
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R
= = [ (v e )

11__—2 2~ 2
T SN

16a(a2 + U)Ky (a) - 64 (55)

where g = B“vl + (k')2 and k' = %%w The analytical solution for the

parabolic distribution is given by

2h0ugPLag 0y 2

Tx09a8l1 + (k! )2]

0, (k') = [(209&5 + 25,344al + 331, 7768.2)K0(a) +

(a7 + 3,42485 + 133,632a3 + 663,5528)K1 (a) +
a

(a7 + 6307) f Ko(x) ax - 1,1208% + 32,25682 - 663,552
0

(56)

A comparison of the values obtained for equations (55) and (56) and
plots of the results obtained by the numerical-integration process indi-
cated no difference, and none is shown in figure 9.

It is significant to observe that very little variation exists in
the power spectra of figure 9 for the four span loadings considered.
However, as compared with the rolling moment due to vertical gusts
(fig. 7), the rolling moment due to horizontal gusts is relatively small
for smsll values of trim angle of attack. Although no exact expression
for the ratio of the power spectra of the rolling moments due to Ug

and g may be given without including B' and 7, it may be seen from
figures 7 and 9 that, in general,
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2

3 = (57)

where o, 1s given in radisans.
Calculations for Slide Gusts
For the side gust considered, the correlation function of the

rolling-moment coefficilent as given by equation (32) becomes

ng Vg2 gel\ - Jur|

%, (o) = 2 2 U0 (58)
1 y2 2L

and the variation of this function with Ur/L is, of course, equal to
the variation of equation (41) with r, which is plotted in Ffigure 4.

The power spectrum of the rolling-moment coefficient as glven by
equetion (33) with G(k') given by equation (43) becomes

%, (k") = (59)

The variation of the spectrum with freqyengy__kf = is shown ag the

ol13

G(k') curve of figure 5.

DISCUSSION

The purpose of this section is to discuss the implications of the
assumptions mede in the analysis of this paper, the reasons for making
these assumptions, end the applicetion of the results.
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Assumptions Concerning the Nature of Turbulence

The turbulence was assumed to be homogeneous in order to make the
problem stationary in the statistical sense and thus permit the use of
the mathematical technigues developed for such problems. In a practical
sense, turbulence can be homogeneocus only 1n a limited body of air. The
assumption thus implies that the dimension of this body of air along the
flight path is large compared wlth the distance traversed in the reaction
time of the alrplane. In the case of loads studies this reaction time
is of the order of the time to damp to one-half amplitude, but, in the
case of motion studies, the reaction time may be much larger. Obviocusly,
the grester the body of alr, the greater the relisbility with which the
loads and motions can be predicted (in a statistical sense) for one run
through 1t. In general, turbulence at very low altitudes, which mey be
influenced significantly by the configuration of the ground, and the
turbulence in thunderstorms may not be sufflciently homogeneous for this
type of analysis, but other types of turbulence are likely to be sub-
stantially homogeneous over sufficlently lerge dilstances.

Isotropy was assumed In order to permit the required two-dimensional
correlation functions to be expressed simply in terms of the one-
dimensional correlation functions. For sufficiently short wavelengths
all turbulence is isotropic (see ref. 7), but for long wavelengths it
can be isotropic only if it is homogeneous (both in the plane of the
flight path and perpendiculaer to it). (The condition of axisymmetry is
less restrictive inasmuch as it does not specify the variation of the
characteristics of the turbulence in the vertical direction.) In prac-
tical problems, i1f the turbulence may be assumed to be homogeneous, the
conditions of isotropy are likely to be satisfied sufficiently to permit
the use of the approach presented herein for all but very long wavelengths.
The wavelength at which this approach ceases to be valid depends on the
size of the body of ailr under consideration, being longer for a large

body -

Taylor's hypothesis implies that the variation in gust intensity
that prevails along the flight path at any instant will remain substan-
tlally the same until the airplane has traversed the given body of air.
The required correlation fumctions for atmospheric turbulence are thus
in the nsture of space correlstion functions (rather than time correla-
tion functions) and have been considered as such. The statistical char-
acteristics of the turbulence are then independent of the speed at which
it is-traversed. Clearly, the wvalidity of this hypothesis depends on
the flying speed of the airplane and it would be expected that, at very
low speeds, the hypothesis of Taylor becomes less valld and the results
may be less accurate. On the basls of present knowledge, no definite
lower limiting speed can be quoted. The effect of finite fiying speed
on the gust correlation function can be expected to be most pronounced
for large distances, where the correlation is weak. Thus, the effect
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on the various spectra is. likely to ‘be small and to occur at the longest
wavelengths, where, as previously mentioned, the spectre are somewhat -
uncertain for .other reasons as well. u

For practical purposes, the parameter I (the integral scale of
turbulence) used herein 1s a largely fictitious quantity, inasmuch ae
1t is, to a large extent, proportional to the values of the gust spectra
for infinlte wavelengths. 1In view of the uncertalnties in the values
of the spectra at long wavelengths and the fact that the spectra in this
region predominently define the area under the integral, the parameter L
has little physical significance. Therefore, at present, insufficient
information is available to give an exact value for I, to be used in
connection with the numerical results calcvlated herein. However, on
the basis of the measurements such as those of reference 13, & value
of 1,000 to 2,000 feet appears to be appropriate for the conditions of
the referenced tests. It 1s desirable to obtain more Information con-
cerning the spectra of atmospheric turbulence under a wider range of
conditions. More definlte values could then be deduced by fitting meas-
ured results by means of an analytical expresslon of the type used here.
Thils expression could be used as s means of obtaining a value of 1L by
extrapolation of the measured results to infinite wavelengths (zero
frequency). '

Assumptions Concerning the Aerodynamic Forces

The fundamental assumption concerning the eserodynamic forces is
that they veary linearly wlth gust intensity. This assumptlon implies
that the ratio of the gust speed to the flying speed must always be
fairly small; if the aserodynamic forces and moments tend to very with
gust intensity in a nonlinear manner, as the wing yawlng moments do for
all angles of attack and the other forces and moments do for high angles
of attack, the ratio of gust intensity to flying speed must be very
small - about 1/30 or less. However, as previously mentioned, the wing
yawing moments due to gusts are likely to be quite small, so that some
error in them due to slight deviations from linearity is not likely to
affect appreciably the results of an enslysis of the lateral motion.
Hence, for an eilrplane flying at small angles of attack and at speeds
of about 200 knots or more, in continuous turbulence, the assumption of
linearity should be valid; for flight in severe thunderstorms, it 1s
not likely to be valid, and, for flight at high angles of attack, it is
likely to be valid only for light turbulence.

The rigidity of the wing, which was mentlioned in the list of assump-
tions, enters only indirectly into the problem consildered herein. The
results obtained here are valid whether the wing is rigid or not. How-
ever, in the case of flexible wings (the term "flexible" being used to
describe-wings with deformations which give rise to appreciable aero-
dynamic forces), certain additional information is required. (See ref. 6.)

-
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This information may teke the form of span influence functions 7(y)
modified by static aeroelastic effects, or may require certain cross-
correletion functions or cross spectra between the gust forces and the
dynemic forces, depending on the individual case. |

The assumption thet the indicial-response influence function h(t,y)
can be written as a product of functions of time only and distance along
the span only is based on the reasoning of reference 6. This reasoning,
in turn, is based on the observation that, according to the availlable
information for the 1ift distributions due to sinusoidal motions (and,
hence, those due to indicial motion), the 1ift distribution tends to be
substantially invarisnt with frequency (or time) except for an overall
factor. Inasmuch as this information is confined to umswept wings, this
assumption may not be valid for swept wings.

Application of the Results

In this peper the rolling moments and yawing moments have been cal-
culated for a wing due to the wu, v, eand w components of turbulence.
If the turbulence is isotroplic, these components are statistically inde-
pendent at a point. In any practlical application, all three components
are always present and the wing rolling and yawing moments due to the
combined action of the three components must be known. In isotropic
turbulence, the cross correlations between u and w and between
and w in the horizontal plane sre zero, although u and v bhave a
nonvanishing cross correlation. Thus, the moments due to v and w can
be added directly, but, 1f horizontal-gust effects are to be tasken into
account, not only the moments due to u calculated herein but also the
moments which arise from the cross correlation between u and v should
be added to the others. However, there is reason to believe that the
horizontal-gust effects on the lateral moments are generslly very small,
so that neglect of this cross-correletion effect is usually Justified.

The rolling end yawing moments due to ug and Vg - considered herein

are only those contributed by the wing but, Inasmuch as the lateral moments
contributed by the fuselage and tall as a consequence of these two com-
ponents of gusts are generally very smell, the results given here may,

in general, be used to represent the lateral moments on a complete air-
plane due to these two gust components.

Similerly, the rolling and yawing moments of a complete alrplane due
to the v-component of gusts depend not only on the wing contribution
considered here but also on the contribution of the vertical tail,
which can be calculated in a straightforward menner. For instance, a
method of calculating the yawing moments and side force on a fuselage
and vertical fin due to side gusts is found in reference 1T7.
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Mthough the contribution of the horizontal component of gusts to
the lateral moments appears to be small compared with the other two com~
ponents, it should be kept in mind that the effect of this component
increases as the square of the trim angle of attack. (See eq. (57).)
For conventional airplanes in the landing configuration and for verti-
cally rising airplanes in the transitional stage, the effects of hori-
zontal gusts may well be predominant in calculations of the forces,
moments, and motions due to turbulence.

CONCLUDING REMARKS

The ccrrelation fumctions and power spectra of the rolling and yawing
moments on an airplane wing due to the three components of continuous
random turbulence have been calculated. The rolling moments due to the
longitudinal (horizontel) and normel (vertical) components depend on the
gspanwise distributions of instantaneous gust intensity, which were taken
into account by using the inherent properties of symmetry of isotropic
turbulence. The results consist of expressions for the correlation func-
tions and spectra of the rolling moment in terms of the point correlation
Ffunctions of the two components of turbulence.

Specific numerical calculations were made for s pair of correlation
functions given by simple anelytic expressions, which fit available
experimental data very well. Calculations were made for four 1ift dis-
tributions and the differences in the results calculated for these dis-
tributions were smell. By comperison with the resulits calculated herein,
the results of previous analyses for which it was assumed that random
turbulence along the flight path and variations of turbulence across the
span were linear have been shown to be valid only when the ratio of the
span to the integral scale of turbulence (about 1,000 to 2,000 feet) is
small.

A comparison of the power spectra of the rolling moments due to
horizontal gusts and those due to verticael gusts showed that the vertical
gusts were predominant at small values of trim angle of attack (or trim
1ift coefficient); however, the relative effect due to horizontal gusts
increased as a function of the square of the trim angle of attack.

The rolling moment due to leteral (side) guste, which is small, was
expressed in terms of the instantaneous value of the gust at representa-
tive points on the wing, so that the effect of spanwise veriatlion in gust
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-

intensity was lgnored. The yawing moments were considered to be propor-
tional to the rolling moments, the constants of proportionality being
given by simple serodynamic relations.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronsutics,
Langley Field, Va., September 6, 1956.
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APPENDIX
EVALUATION OF THE ELLIPTIC INTEGRAL WEIGHTING FUNCTION

The evaluation of the integral weighting function I'(n) involves
the integral given by equation (21):

1-
P(T]) = fl ! 7(}"1*) 7(y1*+n) dyl*

For the case of the elliptic distribution of the additional span loading
factor,

%) = 2 gpr - 2

and the integral weighting function to be evalusted becomes

fi-n (yl*)(yl* + n) \jl - 3’1*2 J:T_ (Vl* + n)2 ay*

r(n) = (2)2

T

Under the substitution

2y * + 0 2yy* +q
- 2 -1 B 5

X

the integral may be written as

2 1
r(n) = (22-) (2 . “)f_l (8% - n)(5x + n)\/ - Ko - n)a\[l - i(5x+ 0?2 ax
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Inasmuch as 1 - z2 = (1 - z)(1 + 2z),

5 _2-1

With the notation Xk = ,
2+1 2+

32 1
r(n) = (2 - 1)2(2 + n) f_l[(a - m)32 - n"‘ﬂ\ﬁl - kx) (1 + %) (1 - x)(1 + kx) ax

= @(2 - )32 + 1) fll:(z - )% - ne:,\j(l - kzx?-)(l - x2) ax
)

72

where the Integrand msy be seen to be an even function of the variasble x.
Multiplying numerator and denominator by the radical and expanding yields

(23 2 1 x5 dx 2 2 1 o ax
p{n) = 22 - 32 + 1) (122 - 7) =S -2z e @4 (2- )24 g2 +
x2 { "/:’ V(l - x2x2) (2- 127 [ :L/; V,(l - k2x2)(l - xe)

(2 - )2 + 12 + 122 * 2 & 72 * =
! :FA ;

V‘(l - 12:2) (1 - x9) ) Kl - x22) (1 - «2)

The integrals may be recognized ss elliptic integrals in powers of x2n
for which the closed-form -solutions may be found in reference 16, for
example. In terms of the standard elliptic integrals (in Jacobi's nota-

tion) of modulus k = ==
24+ 1

1 dx
K(k) =
fo fa - x@) @ - x2x?)
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which is defined as a complete elliptic integral of the first kind, and

1 242 -
1-k
E(k)=f _.___x_dx
oOf 1 - x2

which is defined as a complete elliptic integral of the second kind.
Tables of these integrals mey be found in most mathematical handbooks
as well ag in reference 16. In terms of these integrals, the solution
for the integral welghting function is found to be

2
r(n) = &2 - 922 + 1) M[(B £ 32 K(x) - (8 + P + Skl")E(k)} -
%2 15k6

2 2
K2 [(2 + )+ (i - ”2] [(2 + 2)K(x) - 2L + ka)E(k)} *
3K

[(2 - ) +2Tl2 + Tlek%[K(k) ) E(k)] - 2k (x)
K

- 1255(2 + q){lm('fp - 30 - DK + (b4 2 - nl‘)E(k)}
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TAELE I
VARIATION OF y(y*)
Distribution (%)
Rectangular 6y*
Elliptic 3“_2 I
Parabolic 157%(1 - y*2)
Triangular 2’-1-3*(1 - ly*[)
TABLE II
INTEGRAL WEIGHTING FUNCTION ['(n)
Distribution r(n) Limits
Rectangular 6(4 - 61 + 13) 05952
Elliptic 22 (2 + 7) [hn(na - 30 - 1)K(k) + 0Sq%2
15¢°
(& + 9n2 - nl*)E(k)_]
Parabolic %(61; - 3362 + 28013 - hend + 3.,]7) 0S5
;2_—28-(2 - 1092 + 573 + 5t - 3nd) oSns1
Triangular
285(8 - 20n + 1002 + 513 - Sn¥ + 13) 1572

15
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z

(a) Wing passing through three-dimensionsl turbulence.

— ———  Longitudinal components, f(r)
f— r —
t j Lateral components, g(r)

(b) Components of turbulence as a function of distance r.

Figure 1l.- Sign convention esnd stability axes of a wing passing through
a turbulent veloclty field. Arrows denote positive direction, where

epplicable.
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(a) Horizontal gust components.
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(b) Side gust components.

Figure 2.- Schemetic drawing of the relationship between the components
of horizontal and side gusts at any two arbitrary points.
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Filgure 5.- Power spectra of latersl and longitudinal components of
isotroplic atmospheric turbulence.
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(a) Rectangular spen loading.

Figure T.- Power spectrae of rolling moment of wing due to vertical gusts.
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(b) Elliptic span loeding.

Figure T.- Continued.
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(¢) Parebolic span loading.

Figure T.- Continued.
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(4) Triengular span loading.

Figure T.- Concluded.
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(a) Rectangular span loading.

Figure 9.- Power spectra of rolling moment due to horizontal gusts.
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(b) Elliptic span loeding.

Figure 9.- Contilnued.
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Figure 9.- Continued.
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Figure 9.- Concluded.
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